Anthropology 213 Fall 2021 # **Environment and Human Evolution** This is a survey course investigating the influence of environment on the evolutionary history of humans. The course will take the broad perspective that critical aspects of human adaptation resulted from evolutionary steps taken far back in geological time. Understanding the impact of environment on the organism must take into account the morphological, physiological and behavioral trade-offs of each evolutionary advance. The course will review the extent of environmental controls on evolutionary processes over geologic time scales and focus on their influence in the development and diversification of our order, the Primates and our family, the Hominidae. An analysis of the interactions between material culture and the environment will conclude the survey. 3 Credit Hours. <u>Instructor</u>: Craig S. Feibel <u>feibel@eps.rutgers.edu</u> 207 Biological Sciences Building, Douglass Campus 848 932-9345 140 Wright Labs, Busch Campus 848 445-2721 Office Hours: M 4:00 – 5:00 in 207 BioSci, or by arrangement. Class Meetings: Monday & Wednesday, 7:15-8:35 PM 206 BioSci, DC Texts (required): Hazen, R. M. 2013. The Story of Earth. Penguin. Shubin, N. 2009. Your Inner Fish. Vintage. Benton, M. 2008. The History of Life: A Very Short Introduction. Oxford. Additional course materials will be available on the Sakai website (https://sakai.rutgers.edu/) <u>Course Requirements</u>: Assignments will include text readings, quizzes (scheduled bi-weekly and several pop-quizzes), and a research paper. Three hourly examinations are scheduled. Grades will be based on: exams (20, 20, 20 %), research paper (20%), quizzes and attendance (20%). <u>Absences</u>: Students are expected to attend all classes; if you need to miss one or two classes, please use the University absence reporting website https://sims.rutgers.edu/ssra/ to indicate the date and reason for your absence. An email is automatically sent to me. Please note: I expect you to complete all work for this course. Full credit may not be given for late quizzes or exams, but arrangements should be made to make up any work inadvertently missed over the semester. #### Course Syllabus | Week 1 | 1 Sept | Introduction: Evolution and Environment | |--------|--------------------|--| | Week 2 | 6 Sept
8 Sept | Labor Day – No Classes Earth History and Deep Time | | Week 3 | 13 Sept
15 Sept | Wandering Plates and Biogeography The Fossil Record (Geologic Time Scale Quiz) | | Week 4 | 20 Sept
22 Sept | Environmental Systems
Ecological Relationships | | Week 5 | 27 Sep
29 Sep | Theories of Evolution
Charles Darwin and Natural Selection (Linnaean Hierarchy Quiz) | |---------|------------------|---| | Week 6 | 4 Oct
6 Oct | Evolutionary Patterns First Hour Exam | | Week 7 | 11 Oct
13 Oct | Origin of the Earth and Biosphere
Precambrian Experiments | | Week 8 | 18 Oct
20 Oct | Skeletons
Paleozoic World (Characteristics of Life Quiz) | | Week 9 | 25 Oct
27 Oct | Tetrapod Evolution
Mesozoic Reptiles (Skeletons Quiz) | | Week 10 | 1 Nov
3 Nov | Mammals Take the Stage Second Hour Exam | | Week 11 | 8 Nov
10 Nov | Cenozoic World
Paleogene Primates | | Week 12 | 15 Nov
17 Nov | Miocene Apes
Hominin Diversity | | Week 13 | 22 Nov
24 Nov | The Savanna Biome (Papers Due) No Class – Thanksgiving Holiday | | Week 14 | 29 Nov
1 Dec | Hominin Adaptations (Biomes Quiz)
Cultural Beginnings and Out of Africa | | Week 15 | 6 Dec
8 Dec | Neanderthals and the Ice Age World (Hominins Quiz)
Anatomically Modern Humans | | Week 16 | 13 Dec | Holocene Stability, Agriculture and the Future | # Monday 20 December 8 PM Final Exam # Cheating and Plagiarism Short version: Don't cheat. Don't plagiarize. Longer version: Cheating on tests or plagiarizing materials in your paper deprives you of the educational benefits of preparing these materials appropriately. It is personally dishonest to cheat on a test or to hand in a paper based on unacknowledged words or ideas that someone else originated. It is also unfair, since it gives you an undeserved advantage over fellow students who are graded on the basis of their own work. The university's policy on Academic Integrity is available at http://academicintegrity.rutgers.edu/files/documents/AI Policy 9 01 2011.pdf I strongly advise you to familiarize yourself with this document, both for this class and for your other classes and future work. ### Reading Assignments The three books we will read for this class provide additional perspectives on topics we will discuss in class, but are not textbooks to be followed on a lecture-to-lecture basis. I suggest you try to read the books early on in the semester, and refer back to them on relevant topics as we discuss them. Hazen's book focuses on evolution of the Earth itself, and compliments material we will initially discuss in **Weeks 2-7**. Benton highlights aspects of the evolution of life, and follows aspects of our discussions in Weeks 6 - 13. Shubin follows tetrapod evolution, and most closely relates to the topics we will discuss in Weeks 7-9. #### **Learning Goals** 1. Knowledge and major concepts: Students will learn about: the spatial and temporal scales at which Earth's processes operate. Earth's systems and complex interactions. how Earth and humans are inextricably linked. the fossil record and its distribution through time. how to use evidence to evaluate earth science concepts and draw conclusions. 2. Skills: Students will develop their abilities to ... read, visualize and interpret spatial representations of scientific data. distinguish among evidence (data), models, assumptions, hypotheses, theories, interpretations, and predictions / recommendations. reason with and/or evaluate multiple working hypotheses. 3. Habits and attitudes: Students will employ appropriate learning skills for the sciences, including evaluation of data, reasoning and questioning. consider science as an ongoing endeavor that embraces curiosity, creativity and societal needs, and is not just a set of facts. recognize and experience two approaches used in the Earth system sciences, including: historical, descriptive, systems-oriented approaches; experimental approaches. ask "How do we know?", "Why do we accept it?", and "What is the evidence for ...?"